BinarySearchTree
Implementation

Efficient Dynamic Structure for
Search?

m What is a typical data structure used for search?
m Sorted Array

m What if we want the structure to be dynamic?
m Will a linked list work?

m How do we make the structure efficient?

+
Insert Into a Sorted Structure

m Insert 5 into...

(Searchisi ,Insert requires shift)
m Sorted Array J 2

| 1 \ 3 \ / \12\20\21]

m Sorted Double Linked List (Search is slow, insert is fast)

Can we have both fast search and fast insert?

An Efficient Data Structure

m Imagine a data structure that only needs at most O(log n)
comparisons to find an answer and O(log n) actions to
insert or remove a value.

m What would it look like?
m For search: Each comparison would need to eliminate half of the
remaining options.

m For insertion/removal: The location of the value would need to be
log n steps from the initial starting place or cause log n items to
shift.

Will a Binary Search Tree work?

Insert 68

+
Implementation

m add

m find

E min

B max

B SUCCEeSsor

m predecessor

B remove

Add e

m If tree is empty

® make a root node with e as its data

m else

m add(e, root);

+
Add e, node

m if e <node.data
m if (node.left == null)
m make a left node with e as its data

m else
m add(e, node.left)

m else if e > node.data
m if (node.right == null)

m else

m return false // can't add equal items.

+
Find e

m [f tree is empty
m return null

m else
m return find(e, root)

m find(e, node)
m if e equals node.data
m return node data
m else if e < node.data
m return find(e, node.left)
m else
m return find(e, node.right)

max()

[note: min is similar using node.left instead of node.right]

m If tree is empty

® return null

m else

m return max(root)

m max(node)
m if node.right == null
m return node data
m else

m return max(node.rignt)

predecessor(node)

[note: successor is similar using
node.right instead of node.left]

m return max(node.left)

+
Traversal algorithms

m PreOrder(treeNode)
m if TreeNode is empty

m done
m else
m "visit" treeNode
m PreOrder(treeNode.left)
m PreOrder(treeNode.right)

m Simlarly for inOrder and postOrder

m Another example on board.

+ .
Exercise

m Get into groups

m do part 1, steps 1 to 3 from Assignment 6 in your group.

